Newton's method and nonlinear boundary value problems
نویسندگان
چکیده
منابع مشابه
An optimal analytical method for nonlinear boundary value problems based on method of variation of parameter
In this paper, the authors present a modified convergent analytic algorithm for the solution of nonlinear boundary value problems by means of a variable parameter method and briefly, the method is called optimal variable parameter method. This method, based on the embedding of a parameter and an auxiliary operator, provides a computational advantage for the convergence of the approximate soluti...
متن کاملSinc-Galerkin method for solving a class of nonlinear two-point boundary value problems
In this article, we develop the Sinc-Galerkin method based on double exponential transformation for solving a class of weakly singular nonlinear two-point boundary value problems with nonhomogeneous boundary conditions. Also several examples are solved to show the accuracy efficiency of the presented method. We compare the obtained numerical results with results of the other existing methods in...
متن کاملNonlinear Elliptic Boundary Value Problems
It is the object of the present note to present a new nonlinear version of the orthogonal projection method for proving the existence of solutions of nonlinear elliptic boundary value problems. The key point in this method is the application of a new general theorem concerning the solvability of nonlinear functional equations in a reflexive Banach space involving operators which may not be cont...
متن کاملNonlinear Multivalued Boundary Value Problems ∗
In this paper, we study nonlinear second order differential inclusions with a multivalued maximal monotone term and nonlinear boundary conditions. We prove existence theorems for both the convex and nonconvex problems, when domA 6= R and domA = R , with A being the maximal monotone term. Our formulation incorporates as special cases the Dirichlet, Neumann and periodic problems. Our tools come f...
متن کاملShooting Method for Nonlinear Singularly Perturbed Boundary-value Problems
Asymptotic formulas, as ε → 0, are derived for the solutions of the nonlinear differential equation εu+Q(u) = 0 with boundary conditions u(−1) = u(1) = 0 or u′(−1) = u(1) = 0. The nonlinear term Q(u) behaves like a cubic; it vanishes at s−, 0, s+ and nowhere else in [s−, s+], where s− < 0 < s+. Furthermore, Q (s±) < 0, Q (0) > 0 and the integral of Q on the interval [s−, s+] is zero. Solutions ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 1974
ISSN: 0022-247X
DOI: 10.1016/0022-247x(74)90169-3